Sensitive and accurate detection of copy number variants using read depth of coverage.
نویسندگان
چکیده
Methods for the direct detection of copy number variation (CNV) genome-wide have become effective instruments for identifying genetic risk factors for disease. The application of next-generation sequencing platforms to genetic studies promises to improve sensitivity to detect CNVs as well as inversions, indels, and SNPs. New computational approaches are needed to systematically detect these variants from genome sequence data. Existing sequence-based approaches for CNV detection are primarily based on paired-end read mapping (PEM) as reported previously by Tuzun et al. and Korbel et al. Due to limitations of the PEM approach, some classes of CNVs are difficult to ascertain, including large insertions and variants located within complex genomic regions. To overcome these limitations, we developed a method for CNV detection using read depth of coverage. Event-wise testing (EWT) is a method based on significance testing. In contrast to standard segmentation algorithms that typically operate by performing likelihood evaluation for every point in the genome, EWT works on intervals of data points, rapidly searching for specific classes of events. Overall false-positive rate is controlled by testing the significance of each possible event and adjusting for multiple testing. Deletions and duplications detected in an individual genome by EWT are examined across multiple genomes to identify polymorphism between individuals. We estimated error rates using simulations based on real data, and we applied EWT to the analysis of chromosome 1 from paired-end shotgun sequence data (30x) on five individuals. Our results suggest that analysis of read depth is an effective approach for the detection of CNVs, and it captures structural variants that are refractory to established PEM-based methods.
منابع مشابه
GROM-RD: resolving genomic biases to improve read depth detection of copy number variants
Amplifications or deletions of genome segments, known as copy number variants (CNVs), have been associated with many diseases. Read depth analysis of next-generation sequencing (NGS) is an essential method of detecting CNVs. However, genome read coverage is frequently distorted by various biases of NGS platforms, which reduce predictive capabilities of existing approaches. Additionally, the use...
متن کاملCOPS: A Sensitive and Accurate Tool for Detecting Somatic Copy Number Alterations Using Short-Read Sequence Data from Paired Samples
Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order ...
متن کاملExCNVSS: A Noise-Robust Method for Copy Number Variation Detection in Whole Exome Sequencing Data
Copy number variations (CNVs) are structural variants associated with human diseases. Recent studies verified that disease-related genes are based on the extraction of rare de novo and transmitted CNVs from exome sequencing data. The need for more efficient and accurate methods has increased, which still remains a challenging problem due to coverage biases, as well as the sparse, small-sized, a...
متن کاملImproving detection of copy-number variation by simultaneous bias correction and read-depth segmentation
Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods ar...
متن کاملcnvOffSeq: detecting intergenic copy number variation using off-target exome sequencing data
MOTIVATION Exome sequencing technologies have transformed the field of Mendelian genetics and allowed for efficient detection of genomic variants in protein-coding regions. The target enrichment process that is intrinsic to exome sequencing is inherently imperfect, generating large amounts of unintended off-target sequence. Off-target data are characterized by very low and highly heterogeneous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2009